Low-rank Approximation Based non-Negative Multi-Way Array Decomposition on Event-Related potentials

نویسندگان

  • Fengyu Cong
  • Guoxu Zhou
  • Piia Astikainen
  • Qibin Zhao
  • Qiang Wu
  • Asoke K. Nandi
  • Jari K. Hietanen
  • Tapani Ristaniemi
  • Andrzej Cichocki
چکیده

Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCPD and HALS NCPD were very similar, but LRAHALS NCPD was 70 times faster than HALS NCPD. Moreover, the desired multi-domain feature of the ERP by NCPD showed a significant group difference (control versus depressed participants) and a difference in emotion processing (fearful versus happy faces). This was more satisfactory than that by CPD, which revealed only a group difference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Domain Feature Extraction for Small Event-Related potentials through Nonnegative Multi-Way Array Decomposition from Low Dense Array EEG

Non-negative Canonical Polyadic decomposition (NCPD) and non-negative Tucker decomposition (NTD) were compared for extracting the multi-domain feature of visual mismatch negativity (vMMN), a small event-related potential (ERP), for the cognitive research. Since signal-to-noise ratio in vMMN is low, NTD outperformed NCPD. Moreover, we proposed an approach to select the multi-domain feature of an...

متن کامل

A Schur Method for Low-Rank Matrix Approximation

The usual way to compute a low-rank approximant of a matrix H is to take its singular value decomposition (SVD) and truncate it by setting the small singular values equal to 0. However, the SVD is computationally expensive. This paper describes a much simpler generalized Schur-type algorithm to compute similar low-rank approximants. For a given matrix H which has d singular values larger than ε...

متن کامل

Divide and Conquer Low-rank Preconditioning Techniques

This paper presents a preconditioning method based on a recursive multilevel lowrank approximation approach. The basic idea is to recursively divide the problem into two and apply a low-rank approximation to a matrix obtained from the Sherman-Morrison formula. The low-rank approximation may be computed by the partial Singular Value Decomposition (SVD) or it can be approximated by the Lanczos bi...

متن کامل

Evaluation of SVD and NMF Methods for Latent Semantic Analysis

Different mathematical techniques are being developed to reduce the dimensionality of data within large datasets, for robust retrieval of required information. Latent Semantic Analysis (LSA), a modified low rank approximation form of Vector Space Model, can be used for detecting underlying semantic relationships within text corpora. LSA performs a low-rank approximation on term-document matrix,...

متن کامل

Equivariant and scale-free Tucker decomposition models

Analyses of array-valued datasets often involve reduced-rank array approximations, typically obtained via least-squares or truncations of array decompositions. However, least-squares approximations tend to be noisy in high-dimensional settings, and may not be appropriate for arrays that include discrete or ordinal measurements. This article develops methodology to obtain low-rank model-based re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of neural systems

دوره 24 8  شماره 

صفحات  -

تاریخ انتشار 2014